Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 1): 130029, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340935

RESUMO

The wide application of fully biodegradable polylactic acid/polybutylene terephthalate (PLA/PBAT) blends in environmentally friendly packaging were limited because of poor compatibility. Normal compatibilizers suffer from poor thermal stability and non-biodegradability. In this work, epoxy copolymer (MDOG) with different molecular structures were made of 2-methylene-1, 3-dioxoheptane, and glycidyl methacrylate as raw materials by free radical copolymerization. MDOG copolymers have good biodegradability and a high thermal decomposition temperature of 361 °C. The chemical reaction of the epoxy groups in MDOG with PLA and PBAT during the melting reaction improved the interfacial bonding by decreasing the particle size of PBAT. Compared to the PLA/PBAT blends, the tensile strength and fracture toughness of PLA/PBAT/MDOG blends were enhanced to 34.6 MPa and 115.8 MJ/m3, which are 25 % and 81 % higher, respectively. As a result, this work offers new methods for developing thermally stable and biodegradable compatibilizers, which will hopefully promote the development of packaging industry.


Assuntos
Adipatos , Alcenos , Ácidos Ftálicos , Poliésteres , Polímeros , Resinas Epóxi , Poli A , Ácido Láctico
2.
Int J Biol Macromol ; 243: 125017, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245750

RESUMO

Poor compatibility limits the wide application of biodegradable poly (lactic acid)/poly (butylene adipate-terephthalate) (PLA/PBAT) blends in packaging industry. How to prepare compatibilizers with high efficiency and low cost by simple methods is a challenge. In this work, methyl methacrylate-co-glycidyl methacrylate (MG) copolymer with different epoxy group content are synthesized as reactive compatibilizers to resolve this issue. The effects of glycidyl methacrylate and MG contents on phase morphology and physical properties of the PLA/PBAT blends are systematically investigated. During melt blending, MG migrates to the phase interface, and then grafts with PBAT to form PLA-g-MG-g-PBAT terpolymers. When the molar ratio of MMA and GMA in MG is 3:1, the reaction activity of MG with PBAT is the highest and the compatibilization effect is the best. When the M3G1 content is 1 wt%, the tensile strength and the fracture toughness are increased to 37. 1 MPa and 120 MJ/m3, which increase by 34 % and 87 %, respectively. The size of PBAT phase decreases from 3.7 µm to 0.91 µm. Therefore, this work provides a low-cost and simple method to prepare the compatibilizers with high efficiency for the PLA/PBAT blend, and provides a new basis for the design of epoxy compatibilizers.


Assuntos
Poliésteres , Polímeros , Resinas Epóxi , Adipatos , Poli A , Ácido Láctico
3.
Int J Biol Macromol ; 234: 123584, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796569

RESUMO

The application of poly(lactic acid) (PLA) is limited by its low crystallization rate. Conventional methods to increase crystallization rate usually result in a significant loss of transparency. In this work, a bundled bis-amide organic compound N'-(3-(hydrazinyloxy)benzoyl)-1-naphthohydrazide (HBNA) was used as a nucleator to prepare PLA/HBNA blends with enhanced crystallization, heat resistance and transparency. HBNA dissolves in PLA matrix at high temperature and self-assembles into bundle microcrystals by intermolecular hydrogen bonding at a lower temperature, which induces PLA to form ample spherulites and "shish-kebab-like" structure rapidly. The effects of HBNA assembling behavior and nucleation activity on the PLA properties and the corresponding mechanism are systematically investigated. As a result, the crystallization temperature of PLA increased from 90 °C to 123 °C by adding as low as 0.75 wt% of HBNA, and the half-crystallization time (t1/2) at 135 °C decreased from 31.0 min to 1.5 min. More importantly, the PLA/HBNA maintains good transparency (transmittance > 75 % and haze is ca. 27 %) due to the decreased crystal size, even though the crystallinity of PLA is increased to 40 %, which also led to good heat resistance. The present work is expected to expand the application of PLA in packaging and other fields.


Assuntos
Amidas , Temperatura Alta , Cristalização , Poliésteres/química
4.
Int J Biol Macromol ; 232: 123345, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36669635

RESUMO

Polyhydroxyalkanoates (PHA) is a biodegradable polyester, and its application range is limited by the poor flame retardancy and low modulus. Bentonite (BNT) as a green inorganic filler can improve the modulus and flame retardancy of PHA to a certain extent. An in situ polymerization method was designed to intercalate P-N-containing hyperbranched macromolecules (HBM) among BNT layers (HBM-B) and to improve the flame retardancy while improving the dispersion of BNT in the PHA matrix. The layer spacing of BNT was increased from 1.2 nm to 4.5 nm. The effect law of the joint action of in situ intercalation of BNT and the HBM on flame retardancy and mechanical properties of PHA was systematically studied. The HBM-B showed stronger flame retardancy when the mass ratio of HBM to BNT was 75/25. The limiting oxygen index (LOI) of the PHA/HBM-B composite was increased to 27.6 % while maintaining good toughness. Compared to the physical blend of HBM and BNT (HBM/B), the elongation at break of PHA/HBM-B25 composites can be increased by up to 10 times. When the content of HBM-B is up to 15 wt%, the LOI of PHA-Based composites can reach 29.6 % and the UL-94 rating reaches V-0, which meets the standard of flame-retardant material. Therefore, the present work is expected to expand the application of PHA-based composites in the field of flame retardancy.


Assuntos
Retardadores de Chama , Gastrópodes , Poli-Hidroxialcanoatos , Animais , Bentonita , Poliésteres , Excipientes , Oxigênio
5.
Macromol Rapid Commun ; 44(6): e2200858, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36661258

RESUMO

Polymer melt strength (MS) is strongly correlated with its molecular structure, while their relationship is not very clear yet. In this work, designable long-chain branched polylactide (LCB-PLA) is prepared in situ by using a tailor-made (methyl methacrylate)-co-(glycidyl methacrylate) copolymer (MG) with accurate number of reactive sites. A new concept of branching density (φ) in the LCB-PLA system is defined to quantitively study their relationship. Importantly, a critical point of φc  = 5.5 mol/104  mol C is revealed for the first time, below which the zero-shear viscosity (η0 ) corresponding to MS increases slowly with a slope of Δη0 /Δφ = 1400, while it increases sharply above this critical point due to entanglement of neighboring LCB-PLA chains. Consequently, the MS of PLA increased by >100 times by optimizing the LCB structures while maintaining processibility. Therefore, this work provides a deeper understanding and feasible route in quantitative design of polymers with high(er) melt strength for some specialty applications.


Assuntos
Poliésteres , Polímeros , Poliésteres/química , Polímeros/química , Estrutura Molecular
6.
Int J Biol Macromol ; 147: 1301-1308, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31751697

RESUMO

Shear-induced crystallization plays a crucial role in the manufacturing process of polymers. In this work, crystallization kinetics of biosynthesized polyhydroxyalkanoates (PHA) under different shear conditions were systematically investigated by rheometers. First, rheological properties of PHA melts were performed at different temperature to obtain mastercurves via the time-temperature superposition principle at 170 °C as a reference temperature. Then the stretch relaxation time and corresponding critical shear rate at different temperatures for the flow regime transition were calculated via the discrete Maxwell relaxation time spectrum and Arrhenius equation. Finally, the influence of shear temperature (Ts), shear time (ts) and shear rate (γ̇) on the crystallization process of PHA were discussed. The results showed the crystallization rate of PHA was improved significantly under high shear rate and long shear time. Interestingly, the t1/2 reached the minimum value when the γ̇ or the ts was large enough, which reached around 450 s at isothermal crystallization condition of 100 °C. Moreover, the nucleation density for PHA increased by appx.100 times than that under quiescent conditions. Therefore, this work may provide a useful theoretical guidance on the shear-induced crystallization of PHA.


Assuntos
Poli-Hidroxialcanoatos/química , Reologia , Resistência ao Cisalhamento , Varredura Diferencial de Calorimetria , Cristalização , Cinética , Distribuição Normal , Estresse Mecânico , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...